Feature Selection with Chaotic Hybrid Artificial Bee Colony Algorithm based on Fuzzy (CHABCF)
نویسندگان
چکیده
Feature selection plays an important role in data mining and pattern recognition, especially in the case of large scale data. Feature selection is done due to large amount of noise and irrelevant features in the original data set. Hence, the efficiency of learning algorithms will increase incredibly if these irrelevant data are removed by this procedure. A novel approach for feature selection is introduced in this paper using CHABCF, (Chaotic Artificial Bee Colony based on Fuzzy), algorithm which is a combination of three paradigms: (1) Chaos theory (2) Artificial Bee Colony optimization and (3) Fuzzy logic. The fuzzy logic is used for ambiguity removal while chaos is used for generating better diversity in the initial population of our bee colony optimization algorithm. To demonstrate the efficiency of our algorithm, we have tested it on some well-known benchmarks such as wine, diabet and iris.
منابع مشابه
BeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms
Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...
متن کاملA New Hybrid Algorithm for Short Term Load Forecasting
In restructuring the electric power industry, the load had an important role for market managers and participants when they develop strategies or make decisions to maximize their profit. Therefore, accurate short term load forecasting (STLF) becomes more and more vital for all market participants such as customer or producer in competitive electricity markets. In this paper, a new hybrid algori...
متن کاملFinding the Optimal Path to Restoration Loads of Power Distribution Network by Hybrid GA-BCO Algorithms Under Fault and Fuzzy Objective Functions with Load Variations
In this paper proposes a fuzzy multi-objective hybrid Genetic and Bee colony optimization algorithm(GA-BCO) to find the optimal restoration of loads of power distribution network under fault.Restoration of distribution systems is a complex combinatorial optimization problem that should beefficiently restored in reasonable time. To improve the efficiency of restoration and facilitate theactivity...
متن کاملآموزش شبکه عصبی مصنوعی با نسخه آشوبگونه الگوریتم جستجوی گرانشی و کاربرد آن در پیشبینی آلایندههای هوا: مطالعه قیاسی
Prediction of urban air pollution is an important subject in environmental studies. However, the required data for prediction is not available for every interested location. So, different models have been proposed for air pollution prediction. The feature selection (among 20 features given in Meteorology Organization data) was performed by binary gravitational search algorithm (BGSA) in this st...
متن کاملChaotic Artificial Bee Colony Hybrid Discrete Constrained Optimization Algorithm
Swarm intelligence is a research branch that models the population of interacting agents or swarms that are able to self-organize. An ant colony, a flock of birds or an immune system is a typical example of a swarm system. Bees’ swarming around their hive is another example of swarm intelligence. The Artificial Bee Colony algorithm is an optimization algorithm based on the intelligent behavior ...
متن کامل